
Terasense software. Python API reference

Terasense Group, Inc
21143 Hawthorne Blvd., #459, Torrance, CA 90503, USA

December 15, 2015

Contents

1 Installation 2

2 Overview 3

3 Module terasense.processor 4
3.1 Methods . 4

3.1.1 Main . 5
3.1.2 Exposure-related . 6
3.1.3 Background and normalization-related . 7
3.1.4 Processing . 10

3.2 Properties . 11
3.2.1 General . 11
3.2.2 Multi-threading . 12

4 Module terasense.worker 13
4.1 Methods . 13
4.2 Properties . 15

5 Examples 16
5.1 The simplest program . 16
5.2 Multithreaded version . 16
5.3 Multithreaded version using callbacks . 16
5.4 Image generation . 17
5.5 Use of background and normalization . 17

1

1 Installation

Terasense software is a http://www.python.org/ package. It requires Python and the following extension mod-
ules to be installed:

• Python 2.7 http://www.python.org/download/

• NumPy 1.7 http://www.numpy.org/

• OpenCV 2.4 http://opencv.org with Python bindings

• wxPython 2.9 http://www.wxpython.org

• Pyserial 2.5 http://sourceforge.net/projects/pyserial/files/

It also depends on http://www.microsoft.com/en-us/download/details.aspx?id=5555
Installers for all required software are provided in default installation package. Download it from the provided

link, unzip it to a temporary folder, and execute install.bat script by double-clicking it in Windows Explorer,
it will run all necessary installers for you. Install all packages with default settings, agreeing to EULA where
required.1

Terasense software won’t work with Python 3.x because it is not supported by NumPy. However, if you use
Python 3.3 or newer, you can seamlessly install Python 2.7 alongside Python 3.x (see http://www.python.org/

dev/peps/pep-0397/ for additional information).

1By default most of the stuff will be installed to the folder C:\Python27\ and take about 180 MB of the disk space. If you want
to change the location, you should do that in the very first installer to run, the one for the Python itself. Destinations for all other
packages will be changed accordingly.

2

http://www.python.org/download/
http://www.numpy.org/
http://opencv.org
http://www.wxpython.org
http://sourceforge.net/projects/pyserial/files/
http://www.python.org/dev/peps/pep-0397/
http://www.python.org/dev/peps/pep-0397/

2 Overview

Two main modules are supplied in the terasense package, terasense.processor and terasense.worker. The first
provides processor class for data acquisition and basic processing (including background compensation and
normalizaion); the second provides worker class, which can be used to convert data to a RGB image.

terasense.processor module can work in two modes — multi-threaded or single-threaded. In the single-
threaded mode data acquisition and data processing are performed consequently. It is simple and cause no
potential pitfalls associated with multi-threading. The multi-threaded mode performs data acquisition asyn-
chronously, while data processing is running in parallel; it may be up to two times faster at short exposures.
It should cause no problems in simple usage scenarios, but if you want to use it for something complex, you
should get acquinted with Python’s threading module.

Data processing consists of three main parts — background compensation, normalization, and stitching of
the holes caused by non-performing pixels. It if performed in terasense.processor module.

Background data are read from a config file, there is separate set for each exposure, which is automatically
selected when exposure is changed. They can be re-recorded and it should be done if external temperature is
changed. Obviously, incoming radiation should be switched off. Normalizaion data are stored in a dictionary;
there is a default set, supplied from the factory, but you can record your own (which will be stored under the
label ”recorded”) to take into account distribution of the incoming radiation and effectively flatten the field.
Pixels that produce too low signal-to-noise ratio during recording (either due to defect or to being in dark
spot) are marked as non-performing (the treshold separating performing from non-performing pixels can be
changed after the recording). Readouts from non-performing pixels are substituted by values extrapolated their
neighbours. If the number of the pixels is large, the procedure becomes cpu-intensive and may limit performance
of the camera; you may switch off greedy stitching or stitching completely.

3

3 Module terasense.processor

class terasense.processor.processor([threaded, config, defaults, flags])
This class provides main data acquisition and processing capabilities.

Parameters:

threaded whether to use separate threads (via threading module) for aquisition and processing or
not (boolean, default: True)

config path to a configuration file containing background and normalization data (default:None)

defaults path to a file with auxilliary default settings (default:None)

flags data processing flags (default: terasense.processor.DEFAULT FLAGS)

Data processing flags:

STITCH heal over isolated missing pixels

GREEDYSTITCH heal over large area of missing pixels

ACCUMULATE turn on accumulation (time-domain filtering)

DIFFERENCE turn on the difference mode

DEFAULT FLAGS default value, equivalent to STITCH|GREEDYSTITCH

3.1 Methods

The module provides methods in several groups:
Main:

• start([callback, errorcallback, resume])

• stop([join])

• read()

Exposure:

• SetExposure(exp)

• GetExposure()

• GetExposureRange()

• GetIntTime([exp])

Background and normalization:

• SetBG(data)

• SelectBG(val)

• GetSelectedBG()

4

• SetNorm([data, mask])

• GetNormList()

• SelectNorm([val])

• GetSelectedNorm()

• LoadConfig([zipName])

• SaveConfig(filename)

• RecordCurrentBG([count, ticker])

• RecordBG([count, callback])

• RecordNorm([count, callback])

Processing

• SetStitch([on])

• SetGreedyStitch([on])

• SetThreshold(val)

• GetThreshold()

• SetAccumulation([on])

• SetAccuLength(val)

• GetAccuLength()

• ResetAccumulation()

• SetDifference([on])

3.1.1 Main

start([callback, errorcallback, resume])
If processor instance have been created in a multi-threaded mode, starts acquisition and processing
threads. Otherwise has no effect.

Parameters:

callback a target to be called on each aquisition cycle as callback(data), where data is a numpy.ndarray
containing processed data within [0,1] interval (default: None);

errorcallback a target to be called in case of an error as errorcallback(error, critical), where error
is an instance of Exception, and critical is a boolean value indicating wheather operation should
be stopped or may continue (default: None);

resume if True and callback is None the value of callback from previous call to this function will
be used (default: False).

5

Returns:

None

stop([join])
If processor instance have been created in a multi-threaded mode, stops acquisition and processing
threads. Otherwise has no effect.

Parameters:

join if True, it will try to join acquisition and processing threads (default: True).

Returns:

None

read()
Reads processed data. If processor instance have been created in a multi-threaded mode, the method
will work only if acquisition have been started using start , otherwise it will return None. This method
will not read the same frame twice and it will block if the new frame is not available yet.

Returns:

data numpy.ndarray containing processed data within [0,1] interval.

read raw()
Reads raw unprocessed data. If processor instance have been created in a multi-threaded mode, the
method will work only if acquisition was started using start , otherwise it will return None. This method
is not intended for end-user.

Returns:

data numpy.ndarray containing unprocessed data.

3.1.2 Exposure-related

SetExposure(exp)
Sets current exposure. If running in a multi-threaded mode, the function will return immediately, but
exposure would be actually changed only for the next frame. Background compensation is selected auto-
matically.

Parameters:

exp new exposure number (integer, call GetExposureRange to get supported range; standard
is from 0 to 10 inclusive).

Returns:

error None for success or Exception instance for failure if not running in multi-threaded mode;
otherwise always returns None and in the case of failure errorcallback is called by processing
thread instead.

6

GetExposure()
Gets current exposure.

Returns:

exp current exposure number

GetExposureRange()
Gets available range of exposure numbers.

Returns:

(min, max) a tuple with minimal and maximal available numbers.

GetIntTime([exp])
Gets integration time in microseconds for a given exposure.

Parameters:

exp exposure number; if none is porvided, current exposure is used.

Returns:

duration integration time in microseconds. It is proportional to amplification and is about 1/32
of time required for acquisition of a frame.

Warning: this function is not thread-aware; if you’re calling it without parameter immediately after
SetExposure() while running in multi-threaded mode, you’ll probably get value for a previous exposure
number. Use explicit parameter.

3.1.3 Background and normalization-related

SetBG(data)
Sets data as current backgound data to be used in processing.

Parameters:

data numpy.ndaray with data to be used as a background data. If it is None, empty array is used
(i.e. no background compensation is performed).

Returns:

None

SelectBG(val)
Selects a background data from existing list. The data are set as current backgound data to be used in
processing.

Parameters:

val index of the data in the list (corresponds to exposure); if it is out of range, empty array is used.

Returns:

None

7

GetSelectedBG()
Gets index of a currently selected background data within the list.

Returns:

idx index of a currently selected background; None if no background compensation is performed.

SetNorm([data, mask])
Sets current normalization data to be used in processing.

Parameters:

data numpy.ndaray with data to be used for normalization. If it is None, empty array is used (i.e.
no normalization is performed).

mask numpy.ndaray with corresponding mask data to be used for normalization. If it is None, all
pixels are assumed to be good.

Returns:

None

SelectNorm([val])
Selects normalization from the dictionary by the key (either ”default”, ”recorded”, or None)

Parameters:

val key value. If the key is None or does not exists normalization is switched off.

Returns:

key value of the key on success or None otherwise.

GetNormList()
Gets a list of normalizations as dictionary. It includes all possible keys and boolean values indicate whether
the corresponding normalizaion is available at the moment.

Returns:

dict dictionary of a form {”default”: True— False, ”recorded”: True— False}

GetSelectedNorm()
Gets key for currently selected normalization.

Returns:

key key for the currently selected normalization (”default” or ”recorded”) or None if none is
selected.

LoadConfig([zipName])
Loads previously saved background and normalization data from a configuration file and puts them into
the corresponding list and dictionary.

Parameters:

8

zipName filename for a configuration file. If it is not provided, default configuration file is loaded.
If it is a relative path, it is relative to the module folder.

Returns:

None

SaveConfig(filename)
Saves complete list of backgrounds and normalization data dictionary to a configuration file to be loaded
later.

Parameters:

filename filename for a configuration file. If it is a relative path, it is relative to the module folder.

Returns:

None

RecordCurrentBG([count, ticker])
Record background data for current exposure.

Parameters:

count number of repetitions used for averaging (default: 30).

Returns:

refdata an instance of terasense.ref.RefData object with the background information.

RecordBG([count, callback])
Record background data for all available exposures and places them into the background list.

Parameters:

count number of repetitions used for averaging. If 0 or not provided, then default value is used
(30, may be changed in defaults file).

callback callback to indicate progress. It is called with completed percentage and it is expected
to return tuple (continur, skip), where continue is True unless the process should be aborted
(see wx.ProgressDialog from wxPython package).

Returns:

success True if completed successfully, False if canceled.

Warning: this function requires significant time to be completed — several minutes at default parameters.

RecordNorm([count, callback])
Record normalization data and put them into the normalization dictionary under ”recorded” key.

Parameters:

count number of repetitions used for averaging. If 0 or not provided, then default value is used
(30, may be changed in defaults file).

9

callback callback to indicate progress. It is called with completed percentage and it is expected
to return tuple (continur, skip), where continue is True unless the process should be aborted
(see wx.ProgressDialog from wxPython package).

Returns:

success True if completed successfully, False if canceled.

3.1.4 Processing

SetStitch([on])
Turns stitching (healing over isolated missing pixels) on or off.

Parameters:

on True to turn on, False to turn off (default: True).

Returns:

None

SetGreedyStitch([on])
Turns on greedy stitching (healing over large area of pixels) on or off. Has no effect if stitching is off.

Parameters:

on True to turn on, False to turn off (default: True).

Returns:

None

SetThreshold(val)
Sets threshold value, which separates performing from non-performing pixels in a mask. The value roughly
corresponds to signal-to-noise ratio under normalization conditions.

Parameters:

val new value for threshold (default: 10.0, may be changed in defaults file).

Returns:

None

GetThreshold()
Returns current threshold value.

Returns:

val current threshold value.

SetAccumulation([on])
Turns accumulation on or off.

Parameters:

10

on True to turn on, False to turn off (default: True).

Returns:

None

SetAccuLength(val)
Sets accumulation length (window size for time-domain filtering).

Parameters:

val accumulation length (coerced to [1,100]).

Returns:

None

This method does not turn accumulation on! Use SetAccumulation().

GetAccuLength()
Returns current accumulation length (window size for time-domain filtering). Result does not depend on
whether the accumulation is on or off.

Returns:

val current accumulation length.

ResetAccumulation()
Resets accumulated data (i.e. starts accumulation anew).

Returns:

None

SetDifference([on])
Turns the difference mode on or off.

Parameters:

on True to turn on, False to turn off (default: True).

Returns:

None

3.2 Properties

3.2.1 General

X SIZE X dimension of the sensor array (integer, read-only).

Y SIZE Y dimension of the sensor array (integer, read-only).

bgList background list containing background information for each available exposure. Each item is an instance
of terasense.ref.RefData. See SelectBG, GetSelectedBG, LoadConfig, RecordCurrentBG, RecordBG meth-
ods.

11

normDict normalization dictionary containing normalization information. By default it contains ”default”
and ”recorded” keys (with values possibly being None). Each item is an instance of terasense.ref.RefData.
See GetNormList, SelectNorm, GetSelectedNorm, LoadConfig,

RecordNorm methods.

3.2.2 Multi-threading

Generally, it is recommended to use either callback of the start method or read method to get access to the
data in multi-threaded mode. However, if you want to have a direct access, here are several properties to do
that.

result numpy.ndarray with the shape (X SIZE, Y SIZE), which contains processed data during multi-threaded
operation.

datalock instance of threading.Lock(). Acquire it if you access result property directly.

ready instance of threading.Event(). It is set when result property is renewed.

12

4 Module terasense.worker

class terasense.worker.Worker(size, [flags])
This class provides means for converting data array to an image with some additional processing. It relies
on Numpy and OpenCV.

Parameters:

size a tuple with dimensions of the imag/data array (width, height)

flags processing flags (default: terasense.processor.DEFAULT FLAGS)

Data processing flags:

FALSECOLOR produce image in false colors (rainbow) instead of b/w (tinted)

SMOOTH smooth image (space-domain filtering)

NEGATIVE invert image

MEDIAN use median filtering instead of gaussian blurring for smoothing

MIRROR mirror the image

DEFAULT FLAGS default value, equivalent to FALSECOLOR|SMOOTH

4.1 Methods

The module provides the following methods:

• makeImg(data)

• SetBrightness(black,white)

• SetContrast(black,white)

• SetGamma(val)

• SetSmoothness(val)

• GetSmoothness()

• data2RGB(data)

• statistics(data, [selection])

makeImg(data) Generates image from data according to the current settings.

Parameters:

data input data (one-channel [0,1] array of floats).

Returns:

img three-channel RGB image.

13

SetBrightness(black,white) Sets brightness using black and white points.

Parameters:

black black point value in [0, white)

white white point value in (black, 1]

Returns:

None

SetContrast(black,white) Sets contrast using black and white points.

Parameters:

black black point value in [0, white)

white white point value in (black, 1]

Returns:

None

SetGamma(val) Sets gamma value.

Parameters:

val gamma value (gamma ¿ 0).

Returns:

None

SetSmoothness(val) Sets smoothness parameter.

Parameters:

val smoothness parameter (0, 100]. For gaussian blur smoothing it is the standard deviation ×100,
for median smoothing it sets 3× 3 kernel if val ≤ 50 and 5× 5 kernel otherwise.

Returns:

None

GetSmoothness() Gets smoothness value.

Returns:

val value of the smoothness parameter (0, 100]

data2RGB(data) Converts one-channel BW data to three-channel RGB data, output depends on the presense
of FALSECOLOR flag in processFlags property. Parameters:

data input data (one-channel [0,1] array of floats).

Returns:

img three-channel RGB image.

14

4.2 Properties

processFlags mask, which defines processing options according to data processing flags (see description
of the constructor). It may be changed at any time.

brightness brightness parameter, float, possible values in [−1, 1] range.

contrast contrast parameter, float, possible values in (0, inf) range.

size tuple with 2D dimensions of the data (width, height) (read-only).

15

5 Examples

5.1 The simplest program

from terasense import processor as tp

source = tp.processor(False) # no multithreading

source.SetExposure(3)

for i in range(100):

data = source.read()

#do something with data

5.2 Multithreaded version

Data acquisition from the camera is performed in a separate thread. In this case you need to start acquisition
explicitly, otherwise read() would return None.

from terasense import processor as tp

source = tp.processor() # multithreading is on by default

source.SetExposure(3)

#In the multithreaded case you need to start data acquisition explicitly

source.start()

for i in range(100):

data = source.read()

#do something with data

#Call stop() to stop acquisition and join the acquisition and processing thread

source.stop()

5.3 Multithreaded version using callbacks

You can provide callback function to be called each time new frame became available. Callback function is
executed in the same thread as data processing.

from terasense import processor as tp

import time

count = 0

def callback(data):

global count

#do something with data

count +=1

print count,

source = tp.processor() # multithreading is on by default

source.SetExposure(3)

#In the multithreaded case you need to start data acquisition explicitly

16

source.start(callback)

Sleep 10 seconds or do something while acquisition is going on

time.sleep(10)

#stop() function should be called from the main thread, not from the callback

source.stop()

5.4 Image generation

from terasense import processor as tp

from terasense import worker as tw

source = tp.processor()

convert = tw.Worker(size = (source.X_SIZE,source.Y_SIZE))

source.SetExposure(3)

#In the multithreaded case you need to start data acquisition explicitly

source.start()

for i in range(100):

data = source.read()

img = convert.makeImg(data)

#do something with image

#Call stop() to stop acquisition and join the acquisition and processing thread

source.stop()

5.5 Use of background and normalization

from terasense import processor as tp

def ticker(progress):

if progress < 100:

print ".",

else:

print " "

return (True, False)

source = tp.processor()

raw_input("Prepare to record background. Switch off incoming radiation and press Enter")

#Background is recorded for all exposures, it will take several minutes.

ay be you’ll want to use SaveConfig/LoadConfig to avoid repeating the procedure.

source.RecordBG(callback = ticker)

17

raw_input("Prepare to record normalization. Switch on incoming radiation and press Enter")

#Do not forget to select desired exposure.

source.SetExposure(5)

Normalization recording may raise an Exception if illumination condition are detected to be unsuitable.

try:

source.RecordNorm(callback = ticker)

except Exception as e:

print e

#You are free to change exposure - all backgrounds are stored.

source.SetExposure(3)

source.start()

for i in range(100):

data = source.read()

#do something with data

source.stop() #call stop() to stop acquisition and join the acquisition and processing thread

18

	Installation
	Overview
	Module terasense.processor
	Methods
	Main
	Exposure-related
	Background and normalization-related
	Processing

	Properties
	General
	Multi-threading

	Module terasense.worker
	Methods
	Properties

	Examples
	The simplest program
	Multithreaded version
	Multithreaded version using callbacks
	Image generation
	Use of background and normalization

